SILAHKAN MENGGUNAKAN " MESIN TRANSLATE "..GOOGLE TRANSLATE
DISAMPING KANAN INI.............
PLEASE USE ........ "TRANSLATE MACHINE" .. GOOGLE TRANSLATE BESIDE RIGHT THIS
....................................
DISAMPING KANAN INI.............
PLEASE USE ........ "TRANSLATE MACHINE" .. GOOGLE TRANSLATE BESIDE RIGHT THIS
....................................
bagaimana
kecepatan membatasi perubahan evolusi dari kolom vertebral
Running for life: How speed restricts evolutionary change of the
vertebral column
Date:
July 14,
2014
Source:
Naturalis Biodiversity Center
Summary:
One of the riddles of mammal evolution is explained:
the conservation of the number of trunk vertebrae. Dutch and American
researchers have shown that this conservation is due to the role of speed in
survival of fast running mammals. They measured variation of 774 skeletons of
fast and slow species. The researchers found that a combination of
developmental and biomechanical problems prevents evolutionary change in the
number of trunk vertebrae in fast, but not in slow mammals.
.................................
One of the riddles of mammal evolution explained: the strong
conservation of the number of trunk vertebrae. Researchers of the Naturalis
Biodiversity Center and the University of Utah show that this conservation is
probably due to the essential role of speed and agility in survival of fast
running mammals. They measured variation in vertebrae of 774 individual mammal
skeletons of both fast and slow running species. The researchers found that a
combination of developmental and biomechanical problems prevents evolutionary
change in the number of trunk vertebrae in fast running and agile mammals. In
contrast, these problems barely affect slow and sturdy mammals.
The study
will appear on 14 July 2014 in PNAS.
The mammal
vertebral column is highly variable among species, reflecting adaptations to a
wide range of lifestyles, from burrowing in moles to flying in bats. Yet, as a
rule, the number of trunk vertebrae varies little between most mammal species.
The vertebral column and its high evolutionary potential is considered to be of
central importance for the evolution of vertebrates, which is why the constancy
is both puzzling and important. The authors propose, on biomechanical and
developmental grounds that evolutionary change is virtually impossible in fast
running and agile mammals, but only marginally affects slow and sturdy mammals.
The rationale is that several mutations are necessary to change the number of
trunk vertebrae, with single mutations leading to irregularly shaped
transitional lumbosacral vertebrae that are incompletely and asymmetrically
fused to the sacrum. These irregular lumbosacral joints reduce flexibility,
thus severely hampering running and jumping. Their observations indeed show
that selection against these initial changes is strong in fast and agile
mammals and weak in slower and sturdier ones.
In total,
774 skeletons of 90 different species were analysed. The skeletons belonged to
collections of 9 European natural history museums including Naturalis
Biodiversity Center, Leiden.
"The
stiffness of the back of a mammal is key to whether evolutionary change is
possible or not," said Frietson Galis, one of the authors of the study.
"`the locomotion of slow mammals with a stiff back is only marginally
affected by irregular lumbosacral joints, but for fast running mammals such
joints are fatal " continued Clara ten Broek another author of the study.
"A
combination of developmental, biomechanical and evolutionary insights and a
large dataset were necessary to solve this puzzle of mammal evolution,"
said Frietson Galis.
"The
stiffness of the back of a mammal is key to whether evolutionary change is
possible or not," said Frietson Galis, researcher at Naturalis
Biodiversity Center and one of the authors of the study. "the locomotion
of slow mammals with a stiff back is only marginally affected by irregular
lumbosacral joints, but for fast running mammals such joints are fatal"
continued Clara ten Broek another author of the study.
"A
combination of developmental, biomechanical and evolutionary insights and a
large dataset were necessary to solve this puzzle of mammal evolution,"
said Frietson Galis.
Story
Source:
The above
story is based on materials provided by Naturalis Biodiversity Center. Note: Materials may be edited
for content and length.
Journal
Reference:
- Frietson Galis, David R. Carrier, Joris van Alphen, Steven D. van der Mije, Tom J.M. Van Dooren, Johan A. J. Metz, Clara M.A. ten Broek. Fast running restricts evolutionary change of the vertebral column in mammals. PNAS, 2014 DOI: 10.1073/pnas.1401392111