DISAMPING KANAN INI.............
PLEASE USE ........ "TRANSLATE MACHINE" .. GOOGLE TRANSLATE BESIDE RIGHT THIS
.................
Biomotor ditemukan
di banyak bakteri dan virus
Nano-biotechnologists
telah melaporkan penemuan baru, kelas ketiga biomotor, unik karena menggunakan mekanisme
"Revolusi tanpa rotasi". Biomotors revolusi ini meluas di kalangan
banyak bakteri dan virus.
Biomotor discovered in many bacteria and viruses
Date:
August 6,
2014
Source:
University of Kentucky
Summary:
Nano-biotechnologists have reported the discovery of a
new, third class of biomotor, unique in that it uses a "revolution without
rotation" mechanism. These revolution biomotors are widespread among many
bacteria and viruses.
...........................
Scientists at the University of Kentucky, led by
nano-biotechnologist Peixuan Guo, have made some critical discoveries over the
past year into the operation of biomotors, the molecular machines used by
viruses and bacteria in the packaging of DNA.
Biomotors
function similarly to mechanical motors but on a nano-scale. Last year, Guo's
team reported the discovery of a new, third class of biomotor, unique in that
it uses a "revolution without rotation" mechanism. Rotation is the
turning of an object around its own axle, as Earth does every 24 hours.
Revolution is the turning of an object around a second object, as Earth does
around the sun.
Recently,
Guo's team reported that these revolution biomotors are widespread among many
bacteria and viruses.
Guo,
director of the Nanobiotechnology Center and the William Farish Endowed Chair
of Nanobiotechnology at the Markey Cancer Center and UK College of Pharmacy
said these biomotors are of great interest to medical researchers.
"DNA-packaging
technology has tremendous potential applications in the diagnosis and treatment
of viral diseases and cancers, as well as in personalized medicine and
high-throughput human genome sequencing," he said. "The DNA packaging
motor itself can serve as a high efficient drug target for the development of
anti-viral and anti-bacterial therapy."
Guo hopes
the current findings will generate new momentum in the viral-assembly field among
young scientists.
In his early
career, as a graduate student in Dwight Aderson's lab, Guo constructed the
first viral motor outside the cell, the DNA-packaging motor of bacteria virus
phi29. He also discovered one of the vital components of the motor, the
six-membered RNA ring that gears the phi29 DNA-packaging motor. His postdotoral
experience at NIH with Bernard Moss, a scientist in vaccinia virus studies and
a member of the National Academy of Sciences, expanded his vision on the DNA
packaging of animal and human viruses.
Research on
this motor led to dozens of papers published and debated in many prominent
journals such as Nature, Science, Cell, PNAS, Molecular Cell, PLOS Biology,
EMBO J, Virology, ACS Nano, RNA, Nature Nanotechnology, Nature Protocol, Cell
and Bioscience, Biotechnology Advances, Current Opinion of Biotechnology,
Advanced Virus Research, Biophysical Journal and the Journal of Virology.
However, the
main mechanism of motor action over many years of studies has not been
elucidated until recently, Guo says.
In 1998, Guo
and his lab began to test a new hypothesis. Guo's research has persisted, and
it continues to strongly support the ATPase hexameric model in viral DNA
packaging. Now, discovery of the revolution motor has solved many puzzles that
have eluded researchers throughout the 35 years of investigations of the
mechanism of dsDNA translocation motors.
Three recent
publications coming out of the Guo lab provide new evidence and support for
Guo's widespread revolution mechanism.
Story
Source:
The above
story is based on materials provided by University of Kentucky. Note: Materials may be edited
for content and length.
Journal
References:
- Gian Marco De-Donatis, Zhengyi Zhao, Shaoying Wang, Lisa P Huang, Chad Schwartz, Oleg V Tsodikov, Hui Zhang, Farzin Haque, Peixuan Guo. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size. Cell & Bioscience, 2014; 4 (1): 30 DOI: 10.1186/2045-3701-4-30
- Peixuan Guo. Biophysical Studies Reveal New Evidence for One-Way Revolution Mechanism of Bacteriophage ϕ29 DNA Packaging Motor. Biophysical Journal, 2014; 106 (9): 1837 DOI: 10.1016/j.bpj.2014.03.041
- Peixuan Guo, Zhengyi Zhao, Jeannie Haak, Shaoying Wang, Dong Wu, Bing Meng, Tao Weitao. Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnology Advances, 2014; 32 (4): 853 DOI: 10.1016/j.biotechadv.2014.01.006