Top Menu

Mikroskop lens free dapat mendeteksi kanker pada tingkat sel--T-REC-komunitas reptil-semarang--KSE-komunitas satwa eksotik

SILAHKAN MENGGUNAKAN " MESIN TRANSLATE "..GOOGLE TRANSLATE 
DISAMPING KANAN INI............. 

PLEASE USE ........ "TRANSLATE MACHINE.. GOOGLE TRANSLATE BESIDE RIGHT THIS

................. 



T-REC -TUGUMUDA REPTILES COMMUNITY-INDONESIA

 
More info :
minat gabung : ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
08995557626
..................................
KSE – KOMUNITAS SATWA EKSOTIK – EXOTIC PETS COMMUNITY-- INDONESIA
Visit Our Community and Joint W/ Us....Welcome All Over The World
 KSE = KOMUNITAS SATWA EKSOTIK

MENGATASI KENDALA MINAT DAN JARAK

KAMI ADA DI TIAP KOTA DI INDONESIA 

GABUNG......... ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
HUBUNGI   :  089617123865

......................... 



Mikroskop lens free  dapat mendeteksi kanker pada tingkat sel


Sebuah mikroskop lensa-bebas   dapat digunakan untuk mendeteksi adanya kanker atau kelainan-level cell lainnya dengan akurasi yang sama dengan mikroskop optic yang lebih besar dan lebih mahal , telah dikembangkan oleh para peneliti. Penemuan ini bisa menyebabkan teknologi portabel lebih murah dan  untuk melakukan pemeriksaan umum jaringan, darah dan spesimen biomedis lainnya. Ini mungkin terbukti sangat berguna di daerah terpencil dan dalam kasus di mana sejumlah besar sampel harus diperiksa dengan cepat............




.................................


Lens-free microscope can detect cancer at cellular level
Date:
December 17, 2014
Source:
University of California - Los Angeles
Summary:
A lens-free microscope that can be used to detect the presence of cancer or other cell-level abnormalities with the same accuracy as larger and more expensive optical microscopes, has been developed by researchers. The invention could lead to less expensive and more portable technology for performing common examinations of tissue, blood and other biomedical specimens. It may prove especially useful in remote areas and in cases where large numbers of samples need to be examined quickly.
.........................
ucLA researchers have developed a lens-free microscope that can be used to detect the presence of cancer or other cell-level abnormalities with the same accuracy as larger and more expensive optical microscopes.
The invention could lead to less expensive and more portable technology for performing common examinations of tissue, blood and other biomedical specimens. It may prove especially useful in remote areas and in cases where large numbers of samples need to be examined quickly.
The microscope is the latest in a series of computational imaging and diagnostic devices developed in the lab of Aydogan Ozcan, the Chancellor's Professor of Electrical Engineering and Bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science and a Howard Hughes Medical Institute professor. Ozcan's lab has previously developed custom-designed smartphone attachments and apps that enable quick analysis of food samples for allergens, water samples for heavy metals and bacteria, cell counts in blood samples, and the use of Google Glass to process the results of medical diagnostic tests.
The latest invention is the first lens-free microscope that can be used for high-throughput 3-D tissue imaging -- an important need in the study of disease.
"This is a milestone in the work we've been doing," said Ozcan, who also is the associate director of UCLA's California NanoSystems Institute. "This is the first time tissue samples have been imaged in 3D using a lens-free on-chip microscope."
The research is the cover article in Science Translational Medicine, which is published by the American Association for the Advancement of Science.
The device works by using a laser or light-emitting-diode to illuminate a tissue or blood sample that has been placed on a slide and inserted into the device. A sensor array on a microchip -- the same type of chip that is used in digital cameras, including cellphone cameras -- captures and records the pattern of shadows created by the sample.
The device processes these patterns as a series of holograms, forming 3-D images of the specimen and giving medical personnel a virtual depth-of-field view. An algorithm color codes the reconstructed images, making the contrasts in the samples more apparent than they would be in the holograms and making any abnormalities easier to detect.
Ozcan's team tested the device using Pap smears that indicated cervical cancer, tissue specimens containing cancerous breast cells, and blood samples containing sickle cell anemia. In a blind test, a board-certified pathologist analyzed sets of specimen images that had been created by the lens-free technology and by conventional microscopes. The pathologist's diagnoses using the lens-free microscopic images proved accurate 99 percent of the time.
Another benefit of the lens-free device is that it produces images that are several hundred times larger in area, or field of view, than those captured by conventional bright-field optical microscopes, which makes it possible to process specimens more quickly.
"While mobile health care has expanded rapidly with the growth of consumer electronics -- cellphones in particular -- pathology is still, by and large, constrained to advanced clinical laboratory settings," Ozcan said. "Accompanied by advances in its graphical user interface, this platform could scale up for use in clinical, biomedical, scientific, educational and citizen-science applications, among others."

Story Source:
The above story is based on materials provided by University of California - Los Angeles. The original article was written by Bill Kisliuk. Note: Materials may be edited for content and length.

Journal Reference:
1.    Aydogan Ozcan et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopyScience Translational Medicine, December 2014 DOI: 10.1126/scitranslmed.3009850

















Share this:

 
Designed By OddThemes | Distributed By Gooyaabi Templates