sirkuit gen dalam sel
hidup dapat melakukan perhitungan yang kompleks
Teknik menggabungkan
analog , proses digital dalam sel yang direkayasa
Date:
June 3, 2016
Source:
Massachusetts Institute of Technology
Summary:
Para
peneliti telah mengembangkan teknik untuk mengintegrasikan kedua analog dan
perhitungan digital dalam sel hidup , yang memungkinkan mereka untuk membentuk
sirkuit gen mampu melaksanakan operasi pemrosesan kompleks .
................................
sel-sel hidup yang mampu melakukan perhitungan yang kompleks dari sinyal lingkungan yang mereka hadapi .
perhitungan ini dapat terus menerus , atau analog , di alam - cara menyesuaikan diri dengan perubahan bertahap dalam tingkat cahaya . Mereka juga bisa menjadi digital , yang terlibatkan sederhana atau menonaktifkan proses , seperti inisiasi sel kematian sendiri .
sistem biologi sintetik , sebaliknya , cenderung untuk fokus pada analog atau pengolahan digital , membatasi jangkauan aplikasi yang mereka dapat digunakan .
............................
SILAHKAN MENGGUNAKAN
" MESIN TRANSLATE "..GOOGLE TRANSLATE
DISAMPING KANAN INI.............
PLEASE USE ........ "TRANSLATE MACHINE" .. GOOGLE TRANSLATE BESIDE RIGHT THIS
.................
........................................
........................................
........................................
........................................
T-REC -TUGUMUDA REPTILES COMMUNITY-INDONESIA
More info :
www.trecsemarang2011.blogspot.com
minat gabung : ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
08995557626
DISAMPING KANAN INI.............
PLEASE USE ........ "TRANSLATE MACHINE" .. GOOGLE TRANSLATE BESIDE RIGHT THIS
.................
........................................
........................................
........................................
........................................
T-REC -TUGUMUDA REPTILES COMMUNITY-INDONESIA
More info :
www.trecsemarang2011.blogspot.com
minat gabung : ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
08995557626
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
..................................
..................................
..................................
KSE – KOMUNITAS SATWA EKSOTIK –
EXOTIC PETS
COMMUNITY-- INDONESIA
Visit Our Community and Joint W/ Us....Welcome All Over The World
www.facebook.com/groups/komunitassatwaeksotik/
KSE = KOMUNITAS SATWA EKSOTIK
MENGATASI KENDALA MINAT DAN JARAK
KAMI ADA DI TIAP KOTA DI INDONESIA
DETAIL TENTANG KSE-----KLIK : www.komunitassatwaeksotik-pendaftaran.blogspot.com
GABUNG......... ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
HUBUNGI : 08995557626
Visit Our Community and Joint W/ Us....Welcome All Over The World
www.facebook.com/groups/komunitassatwaeksotik/
KSE = KOMUNITAS SATWA EKSOTIK
MENGATASI KENDALA MINAT DAN JARAK
KAMI ADA DI TIAP KOTA DI INDONESIA
DETAIL TENTANG KSE-----KLIK : www.komunitassatwaeksotik-pendaftaran.blogspot.com
GABUNG......... ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
HUBUNGI : 08995557626
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
FAST RESPON :
08995557626/764047D2
........Komunitas T-REC semarang,komunitas
reptil tugumuda reptiles community semarang,komunitas reptil tugumuda
semarang,komunitas semarang,komunitas reptil semarang.............kenali dan
dalami satwa dan reptil dengan bergabung
bersama kami,hubungi 08995557626 / 764047D2.....
........Komunitas KSE ,komunitas satwa eksotik
,komunitas satwa.............kenali dan dalami satwa dan reptil dengan bergabung bersama kami,hubungi
08995557626 / 764047D2.....
.............................
.................
Gene circuits in live cells can perform complex
computations
Technique combines analogue, digital processes in engineered cells
Date:
June 3, 2016
Source:
Massachusetts Institute of Technology
Summary:
Researchers have
developed a technique to integrate both analogue and digital computation in
living cells, allowing them to form gene circuits capable of carrying out
complex processing operations.
................................
Living cells are capable of performing complex computations on the environmental
signals they encounter.
These computations can
be continuous, or analogue, in nature -- the way eyes adjust to gradual changes
in the light levels. They can also be digital, involving simple on or off
processes, such as a cell's initiation of its own death.
Synthetic biological
systems, in contrast, have tended to focus on either analogue or digital
processing, limiting the range of applications for which they can be used.
But now a team of
researchers at MIT has developed a technique to integrate both analogue and
digital computation in living cells, allowing them to form gene circuits
capable of carrying out complex processing operations.
The synthetic
circuits, presented in a paper published in the journal Nature
Communications, are capable of measuring the level of an analogue input,
such as a particular chemical relevant to a disease, and deciding whether the
level is in the right range to turn on an output, such as a drug that treats
the disease.
In this way they act
like electronic devices known as comparators, which take analogue input signals
and convert them into a digital output, according to Timothy Lu, an associate
professor of electrical engineering and computer science and of biological
engineering, and head of the Synthetic Biology Group at MIT's Research
Laboratory of Electronics, who led the research alongside former microbiology
PhD student Jacob Rubens.
"Most of the work
in synthetic biology has focused on the digital approach, because [digital
systems] are much easier to program," Lu says.
However, since digital
systems are based on a simple binary output such as 0 or 1, performing complex
computational operations requires the use of a large number of parts, which is
difficult to achieve in synthetic biological systems.
........Komunitas T-REC semarang,komunitas
reptil tugumuda reptiles community semarang,komunitas reptil tugumuda
semarang,komunitas semarang,komunitas reptil semarang.............kenali dan
dalami satwa dan reptil dengan bergabung
bersama kami,hubungi 08995557626 / 764047D2.....
........Komunitas KSE ,komunitas satwa eksotik
,komunitas satwa.............kenali dan dalami satwa dan reptil dengan bergabung bersama kami,hubungi
08995557626 / 764047D2.....
Namun, karena sistem digital didasarkan pada output biner sederhana seperti 0 atau 1 , melakukan operasi komputasi yang kompleks memerlukan penggunaan sejumlah besar bagian , yang sulit dicapai dalam sistem biologi sintetis .
"Digital is
basically a way of computing in which you get intelligence out of very simple
parts, because each part only does a very simple thing, but when you put them
all together you get something that is very smart," Lu says. "But
that requires you to be able to put many of these parts together, and the
challenge in biology, at least currently, is that you can't assemble billions
of transistors like you can on a piece of silicon," he says.
The mixed signal
device the researchers have developed is based on multiple elements. A
threshold module consists of a sensor that detects analogue levels of a
particular chemical.
This threshold module
controls the expression of the second component, a recombinase gene, which can
in turn switch on or off a segment of DNA by inverting it, thereby converting
it into a digital output.
If the concentration
of the chemical reaches a certain level, the threshold module expresses the
recombinase gene, causing it to flip the DNA segment. This DNA segment itself
contains a gene or gene-regulatory element that then alters the expression of a
desired output.
"So this is how
we take an analogue input, such as a concentration of a chemical, and convert
it into a 0 or 1 signal," Lu says. "And once that is done, and you
have a piece of DNA that can be flipped upside down, then you can put together
any of those pieces of DNA to perform digital computing," he says.
The team has already
built an analogue-to-digital converter circuit that implements ternary logic, a
device that will only switch on in response to either a high or low
concentration range of an input, and which is capable of producing two
different outputs.
In the future, the
circuit could be used to detect glucose levels in the blood and respond in one
of three ways depending on the concentration, he says.
"If the glucose
level was too high you might want your cells to produce insulin, if the glucose
was too low you might want them to make glucagon, and if it was in the middle
you wouldn't want them to do anything," he says.
Similar
analogue-to-digital converter circuits could also be used to detect a variety
of chemicals, simply by changing the sensor, Lu says.
The researchers are
investigating the idea of using analogue-to-digital converters to detect levels
of inflammation in the gut caused by inflammatory bowel disease, for example,
and releasing different amounts of a drug in response.
Immune cells used in
cancer treatment could also be engineered to detect different environmental
inputs, such as oxygen or tumor lysis levels, and vary their therapeutic
activity in response.
Other research groups
are also interested in using the devices for environmental applications, such
as engineering cells that detect concentrations of water pollutants, Lu says.
The research team
recently created a spinout company, called Synlogic, which is now attempting to
use simple versions of the circuits to engineer probiotic bacteria that can
treat diseases in the gut.
The company hopes to
begin clinical trials of these bacteria-based treatments within the next 12
months.
Story Source:
The above post is
reprinted from materials provided byMassachusetts
Institute of Technology. The original item was written by Helen Knight. Note: Materials
may be edited for content and length.
Journal Reference:
1.
Jacob R. Rubens, Gianluca Selvaggio, Timothy K. Lu.Synthetic
mixed-signal computation in living cells.Nature Communications,
2016; 7: 11658 DOI:10.1038/ncomms11658