Top Menu

Terinspirasi oleh Venus flytrap , para peneliti mengembangkan folding ' snap ' geometry--T-REC-komunitas reptil-semarang--KSE-komunitas satwa eksotik

SILAHKAN MENGGUNAKAN " MESIN TRANSLATE "..GOOGLE TRANSLATE
DISAMPING KANAN INI.............

PLEASE USE ........ "TRANSLATE MACHINE" .. GOOGLE TRANSLATE BESIDE RIGHT THIS

.................


T-REC -TUGUMUDA REPTILES COMMUNITY-INDONESIA


More info :
www.trecsemarang2011.blogspot.com
minat gabung : ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
08995557626
..................................
KSE – KOMUNITAS SATWA EKSOTIK – EXOTIC PETS COMMUNITY-- INDONESIA
Visit Our Community and Joint W/ Us....Welcome All Over The World
www.facebook.com/groups/komunitassatwaeksotik/
 KSE = KOMUNITAS SATWA EKSOTIK

MENGATASI KENDALA MINAT DAN JARAK

KAMI ADA DI TIAP KOTA DI INDONESIA
DETAIL TENTANG KSE-----KLIK : www.komunitassatwaeksotik-pendaftaran.blogspot.com

GABUNG......... ( menerima keanggotaan seluruh kota dan daerah di Indonesia )
HUBUNGI   :  089617123865-08995557626

.........................





Terinspirasi oleh Venus flytrap , para peneliti mengembangkan folding  ' snap  ' geometry


Date:
August 21, 2015
Source:
University of Massachusetts at Amherst
Summary:
Terinspirasi oleh sistim  ' snapping ' alam seperti daun Venus flytrap  dan paruh burung kolibri , sebuah tim ilmuwan telah mengembangkan cara untuk menggunakan lipatan melengkung untuk memberikan kerangka  melengkung tipis cepat , diprogram gerak patah . Teknik baru menghindari kebutuhan untuk material rumit dan metode fabrikasi saat membuat struktur dengan dinamika yang cepat .



................  harus membantu bahan ilmuwan dan insinyur yang ingin merancang struktur yang dapat dengan cepat beralih bentuk dan sifat , kata Santangelo . Dia dan rekan , termasuk ilmuwan polimer Ryan Hayward , menunjukkan bahwa sampai saat ini , belum ada desain aturan geometris umum untuk menciptakan snap antara states  yang stabil dari permukaan “arbitrarily” melengkung ...........more




Inspired by Venus flytrap, researchers develop folding 'snap' geometry
Using curved creases to give thin curved shells a fast, programmable snapping motion
Date:
August 21, 2015
Source:
University of Massachusetts at Amherst
Summary:
Inspired by natural 'snapping' systems like Venus flytrap leaves and hummingbird beaks, a team of scientists has developed a way to use curved creases to give thin curved shells a fast, programmable snapping motion. The new technique avoids the need for complicated materials and fabrication methods when creating structures with fast dynamics.
................
Inspired by natural "snapping" systems like Venus flytrap leaves and hummingbird beaks, a team led by physicist Christian Santangelo at the University of Massachusetts Amherst has developed a way to use curved creases to give thin curved shells a fast, programmable snapping motion. The new technique avoids the need for complicated materials and fabrication methods when creating structures with fast dynamics.
The advance should help materials scientists and engineers who wish to design structures that can rapidly switch shape and properties, says Santangelo. He and colleagues, including polymer scientist Ryan Hayward, point out that until now, there has not been a general geometric design rule for creating a snap between stable states of arbitrarily curved surfaces.
"A lot of plants and animals take advantage of elasticity to move rapidly, yet we haven't really known how to use this in artificial devices," says Santangelo. "This gives us a way of using geometry to design ultrafast, mechanical switches that can be used, for example, in robots." Details of the new geometry appear in an early online issue of Proceedings of the National Academy of Sciences.
The authors point out, "While the well known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood." Though the simultaneous coupling of bending and stretching that deforms a shell naturally gives items "great stability for engineering applications," they add, it makes folding a curved surface not a trivial task.
Santangelo and colleagues' paper outlines the geometry of folding a creased shell and demonstrates the conditions under which it may fold smoothly. They say the new technique "will find application in designing structures over a wide range of length scales, including self-folding materials, tunable optics and switchable frictional surfaces for microfluidics," such as are used in inkjet printer heads and lab-on-a-chip technology.
The authors explain, "Shape programmable structures have recently used origami to reconfigure using a smooth folding motion, but are hampered by slow speeds and complicated material assembly." They say the fast snapping motion they developed "represents a major step in generating programmable materials with rapid actuation capabilities."
Their geometric design work "lays the foundation for developing non-Euclidean origami, in which multiple folds and vertices combine to create new structures," write Santangelo and colleagues, and the principles and methods "open the door for developing design paradigms independent of length-scale and material system."

Story Source:
The above post is reprinted from materials provided byUniversity of Massachusetts at AmherstNote: Materials may be edited for content and length.

Journal Reference:
1.    Nakul Prabhakar Bende, Arthur A. Evans, Sarah Innes-Gold, Luis A. Marin, Itai Cohen, Ryan C. Hayward, Christian D. Santangelo. Geometrically controlled snapping transitions in shells with curved creasesProceedings of the National Academy of Sciences, 2015; 201509228 DOI: 10.1073/pnas.1509228112







Share this:

 
Designed By OddThemes | Distributed By Gooyaabi Templates